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Abstract
Self-dual Yang–Mills equations on noncommutative spaces associated with
pseudo-Euclidean space of signature (2, 2) are shown to be related via
dimensional reductions to noncommutative formulations of Toda equations,
of generalized nonlinear Schrödinger (NS) equations, of the super-Korteweg–
de Vries (super-KdV) as well as of the matrix KdV equations. The
noncommutative extensions of their linear systems and bicomplexes associated
with conserved quantities are discussed as well. A q-plane version of the KdV
equation with linear system is also shown.

PACS numbers: 11.10.Lm, 11.15.q, 11.30.j, 11.30.Pb

1. Introduction

Noncommutative geometry has been involved in noncommutative versions of gauge theories
in relation to strings (for example [1]), and specifically in noncommutative self-dual Yang–
Mills systems [2] and gauge theories of gravity [3]. A number of papers have been devoted
to the study of field theories on noncommutative spaces (for instance [4, 5]), and some
properties have been probed as well as solutions investigated (for examples [6–8], and a
review [5]). Classical integrable models have also been extended to noncommutative spaces
(for instance, see [6–15]), and as examples, noncommutative versions of the Toda, nonlinear
σ -model, (cubic) nonlinear Schrödinger (NS) and Korteweg–de Vries (KdV) equations have
been formulated on such spaces, leading to ‘deformed’ versions of these systems. With
the help of bicomplexes, an infinite set of conserved quantities has been found, which
suggests (complete) integrability of these modified systems [10, 11, 15], and solutions, such as
‘deformed’ solitons, were presented in certain cases [6, 11, 16–18]. Following results on the
deformed ADHM construction [19] and its twistor interpretation [20], a formulation on (anti-)
self-dual Yang–Mills (with the abbreviation: (Anti-)SDYM, below) equations has been shown,
along with twistor and corresponding integrability properties preserved in this setting [21].
Deformed (Anti-)SDYM equations are simply obtained by substituting the usual product by
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the Moyal product in the classical version of these equations. However, different formulations
can be derived by using diverse products on different noncommutative space structures, either
the canonical, the Lie algebra or quantum space structures [4]. The dimensional reductions
of the Moyal product (canonical structure) formulation of the (Anti-)SDYM equations to a
(noncommutative) chiral field model and Hitchin equations are discussed in [6, 21], as well as
integrability properties inherited from the (Anti-)SDYM equations, and (soliton) solutions.

In this short paper SDYM equations on noncommutative versions of pseudo-Euclidean
spaces endowed with a metric of signature (2, 2), denoted E

(2,2), are dimensionally reduced
with the help of certain sets of conditions, or constraints, on the gauge fields. The derivations
shown of the noncommutative systems from the SDYM equations also rely on the same
approach and methods used for ordinary gauge fields, which could here be valued in an
enveloping algebra of a Lie algebra [22]. However, one notes that not all commutative
reductions of (Anti-)SDYM can be extended to noncommutative ones. A reduction to a
noncommutative KdV equation on a q-plane is also found, along with a corresponding linear
system. Once Lax equations or a linear system have been exhibited, the next step would be
to attempt applying the dressing method in order to derive solutions (for example [23]). This
work is planned as a follow-up.

2. Bicomplexes and (noncommutative) linear systems

Here, bicomplexes and linear systems are rapidly mentioned in view of the relation of the
former notion with conservation laws. Definitions and applications of bicomplexes can be
found for example in the following [25–27]. For our purposes, let us use the following
definition below (see for example [27]). A bicomplex corresponds to a linear space over Ror C,
here denoted V , endowed with a grading over the non-negative integers, i.e. V = ⊕i�0V

i, and
two (linear) maps (operators) d and δ between successive spaces V i and V i+1, in other words,
d : V i → V i+1, and δ : V i → V i+1, such that d2· = 0, δ2· = 0, (δd + dδ)· = 0, where · stands
for an element of V .

On the four-dimensional pseudo-Euclidean space E
(2,2) with diagonal metric (+, +,−,−),

one finds the following set of linear equations [28] for the SDYM equations on E
(2,2), with

a change to null variables [24, 28]: t = 1√
2
(x2 − x4), y = 1√

2
(x1 − x3), u = 1√

2
(x2 + x4),

z = 1√
2
(x1 + x3):

(Dz + ωDu)�(x, ω, ω̄) = 0

(Dt − ωDy)�(x, ω, ω̄) = 0 (1)

∂ω̄�(x, ω, ω̄) = 0

where the parameter ω = i (1 − λ)

(1 + λ)
, λ ∈ (a sheet of hyperboloid H

2) and Dt = 1√
2
(D2 −

D4),Du = 1√
2
(D2 + D4),Dy = 1√

2
(D1 − D3),Dz = 1√

2
(D1 + D3), with Dµ = ∂µ + Aµ,µ =

1, 2, 3, 4.
One can build a bicomplex based on the previous type of linear systems (1) with parameter

ω:

D1� = [O1 + ωOω
1

]
� = 0 D2� = [O2 + ωOω

2

]
� = 0 (2)

as the set of two operators d and δ on �(ω) : R
(2,2) → C

n,∈ V 0 [9, 10]:

d� = O1�ξ1 + O2�ξ2 δ� = Oω
1 �ξ1 + Oω

2 �ξ2 (3)

or, in short, d� + ωδ� = 0 (which resembles the ‘linear equation’ formulation of [10, 11]),
where ξ1, ξ2 ∈ �1. Then the conditions for these operators to form a bicomplex: d2 = 0,
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δ2 = 0, dδ + δd = 0, correspond exactly to the compatibility or integrability conditions of the
linear system (2), and provide the SDYM equations. Noncommutative structures are recalled
in [4]. Here, the canonical structure will be used:

[x̂µ, x̂ν] = iθµν where θµν ∈ C (4)

One notes that the quantum space structure with n = 2 includes the quantum (or Manin)
plane [30, 31] as a possible case: ŷx̂ = qx̂ŷ, q ∈ C. Moreover, the associative product
on the function spaces on R

(2,2) is for the canonical structure replaced by the associative but
noncommutative Moyal (–Weyl) product [32], denoted by ∗, for two classical functions f

and g:

(f ∗ g)(x) = exp


 4∑

µ,ν=1

i

2
θµν∂xµ∂x̃ν


 f (xλ)g(x̃σ )

∣∣∣∣∣∣
xµ=x̃µ

. (5)

For the q-plane, one recalls that the product is based on the normal ordering of the operator
x̂, ŷ, where the x̂-operators are left-end sided, and the ŷ-operators are right-end sided [4]:

: f (x̂, ŷ) :: g(x̂, ŷ) :=: (f � g)(x̂, ŷ) : (6)

where � denotes the product of two classical functions in the x, y variables:

(f � g)(x, y) = q(x̃∂x̃y∂y )f (x, y)g(x̃, ỹ)|x̃=x,ỹ=y . (7)

An extension of such � products could be built for higher dimensional quantum spaces
and different orderings could also be implemented in the same fashion. Derivations can also
be defined on quantum spaces, and in particular for the q-plane, one can introduce [31] algebra
automorphisms σx and σy :

σx(x̂) = qx̂ σx(ŷ) = ŷ and σy(x̂) = x̂ σy(ŷ) = qŷ (8)

and q-derivatives, denoted ∂
q
x and ∂

q
y , which are endomorphisms on the q-plane, corresponding

to a
(
σ−1

x σy, σx

)
-derivation and a

(
σy, σxσ

−1
y

)
-derivation, respectively. Explicitly, one has on

the q-plane basis elements (xmyn), the following q-derivatives, extensions of the usual x and
y derivatives [31]:

∂q
x x̂mŷn = [m]x̂m−1ŷn and ∂q

y x̂mŷn = [n]x̂mŷn−1 (9)

where [m] = qm − q−m

q − q−1 , with q2 �= 1. Note that other q-derivations have been defined [33].
For example, if f is an element of A, which denotes the algebra of formal power series in

x̂ and ŷ modulo the relation ŷx̂ = qx̂ŷ, a generalization of the two-dimensional wave equation
can be written in terms of the above derivations on the q-plane:[(

∂q
x

)2 − (
∂q
y

)2
]
f (x̂, ŷ) = 0. (10)

The well known general (wave) solutions: F(x̂ + ŷ) + G(x̂ − ŷ) are not necessarily valid, but
solutions can be expressed as q-series.

3. 2D reductions for a canonical structure

A version of the (Anti-)SDYM equations on E
(2,2) endowed with the canonical structure can

be obtained by using the ∗-product instead of the usual commutative product of two functions
[21, 22]. Thus

Fµν = ∂µAν − ∂νAµ + Aµ ∗ Aν − Aν ∗ Aµ = ∂µAν − ∂νAµ + [Aµ,∗ Aν] (11)
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stands for the field strength of the gauge field components Aµ. The (Anti-)SDYM equations
are then invariant under the (infinitesimal) gauge transformations:

δgAµ = ∂µ� + [Aµ,∗ �] (12)

with � having values in the gauge algebra. It is noted that ∂µ is still a ‘derivation’ for
the canonical structure (4). In the following, slight modifications of known reductions
of the (commutative) SDYM equations to (classical) integrable systems will be used to
derive noncommutative generalizations of the same integrable models, using ‘translational’
reductions of the SDYM equations, helped with constraints on the gauge fields (with values
in the enveloping algebra of a Lie algebra). Reductions [34] involving gauge fields with
values in infinite-dimensional algebras have already been performed in order to derive various
integrable systems [29].

3.1. Toda field equations

From the linear system (1) given in terms of the z, u, t, y variables, the noncommutative
version of the Toda equations, as given in [9], is derived by requiring translation symmetries
along the y and z variables, with ∂u = ∂T − ∂x and ∂t = ∂T + ∂x , and imposing the following
constraints on the fields components:

Az = −L At = M Ay = −(S − I) Au = 0 (13)

where [9]

S =
(n−1)∑
i=1

Ei,i+1 L = G−1 ∗ ST ∗ G

(14)

M = G−1 ∗ (Gt + Gx) G =
n∑

i=1

GiEi,i

with

[Ei,j ]kl = δk
i δj,l G−1

i ∗ Gi = 1 i = 1, . . . , n. (15)

Solutions have been given using the notion of quasideterminant in [16, 17] for non-Abelian
cases.

3.2. Generalized NS equations

Guided by [29, 35], noncommutative NS equations can be derived from the SDYM equations
on E

(2,2) using translational invariance along the coordinates y and t − u, with the ‘ansatz’

Au = 0 At =
[

0 −q

r 0

]

Ay = −κ

[
1 0
0 −1

]
Az = − 1

2κ

[
q ∗ r qx

rx −r ∗ q

]
.

(16)

The residual linear system (1) takes the form

[∂x + (At − ωAy)] ∗ � = 0 [∂T + ω∂x + Az] ∗ � = 0 ∂λ̄� = 0 (17)

and then have the noncommutative generalized NS equations given below as compatibility
equations:

2κqT = qxx + 2q ∗ r ∗ q 2κrT = −(rxx + 2r ∗ q ∗ r) (18)

where x = t + u, T = z and κ is a constant.
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Equations (18) coincide with the equations obtained in [10] from an almost similar
bicomplex, with q = r̄ and κ = i

2 . Let us add that conserved quantities for this
noncommutative system would be derivable in a manner similar to the approach found in
[10]. In [17], a one dependent variable q = r̄ case is discussed.

3.3. Super matrix KdV equations

In a follow-up to the work of [35, 36] on the reduction of the (Anti-)SDYM equations to the
(commutative) KdV equation, the (commutative) matrix KdV equations were obtained from
the same original (Anti-)SDYM equations by imposing invariance under translations [28], and
then using Lie superalgebra valued gauge fields, a supersymmetric version of the matrix KdV
model was found [24].

The symmetries and ansatzes provided in [29, 35] have not allowed us to derive a
noncommutative form of these equations via the same procedure used in noncommutative
(Anti-)SDYM equations. Instead, the formulations of [24, 28, 36] have been found more
suitable for this purpose.

Starting from the linear system (1) and requiring translational symmetries along the
coordinates u and y − z, one derives the residual linear equations

[∂t + At + ω(Az − Ay) + ω2Au] ∗ � = 0 [∂x + Az + ωAu] ∗ � = 0. (19)

A noncommutative version of a supersymmetric (matrix) KdV equation can be produced
from the linear systems (19) by inserting the following ansatz for the gauge field components
into the compatibility equations:

Au =

 0n 0n 0n

−1n 0n 0n

0n 0n 0n


 Az =


0n 0n 0n

Un 0n 0n

0n 0n θφn




Az−y = Az − Ay =

 0n 0n 0n

0n 0n θ1n

θ1n 0n 0n


 Ay =


 0n 0n 0n

Un 0n −θ1n

−θ1n 0n θφn




At =

 0n 0n 0n

a12 0n 0n

0n 0n θa33




(20)

where

a12 = 3Un ∗ Un + Un,xx − 3
2φn ∗ φn,x + 3

2φn,x ∗ φn (21)

a33 = φn,xx + 3
2φn ∗ Un + 3

2Un ∗ φn. (22)

The reduced SDYM equations using the Aµ fields with values in the Lie superalgebra
gl(2n/n) ⊗ A, where A identifies the set of functions on noncommutative R

(2,2), θ is an odd
Grassmann variable, Un and φn are, respectively, n × n matrices with even and odd degree
variables depending on x and t, have the form

Un,t = 3Un,x ∗ Un + 3Un ∗ Un,x + Un,xxx − 3
2φn ∗ φn,xx + 3

2φn,xx ∗ φn
(23)

φn,t = φn,xxx + 3
2φn,x ∗ Un + 3

2φn ∗ Un,x + 3
2Un,x ∗ φn + 3

2Un ∗ φn,x.

It can be verified that these noncommutative equations are left invariant under the
following supersymmetry transformations, induced by the odd Grassmann parameter ε:

δεUn = εφn,x and δεφn = εUn. (24)
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When the odd variables φn are made to vanish, one obtains the matrix KdV equations

Un,t = 3(Un,x ∗ Un + Un ∗ Un,x) + Un,xxx (25)

(another linear system for this equation can be found in [28]) which leads for n = 1 to

Ut = 3(Ux ∗ U + U ∗ Ux) + Uxxx (26)

originally presented in [11] as a noncommutative version of the KdV equation, following a
different path. An infinite set of conserved densities can be derived using a noncommutative
version of the transformation presented in [37]: U = W + λWx + λ2W ∗ W [11]. Results
(without ∗-product) can be found in [16] using the notion of quasideterminant for the
n = 1, φn = 0 case. One can add that the formulation of [36] can also lead to the same
noncommutative version of the KdV equations, which arise as the compatibility of the linear
system (19).

4. 2D reductions to a quantum plane

In this section, a dimensional reduction of the SDYM equations written on a quantum space
is used to derive a noncommutative formulation of the KdV equation on the q-plane. Similar
reductions of Toda, generalized NS and super matrix KdV equations on the q-plane can be
thought of, and since the steps are closely related to those of the previous section, let us focus on
a q-plane KdV equation derivation. However, it is mentioned that the (Anti-)SDYM equations
on quantum space are not necessarily invariant under the gauge transformations (12), and do
not arise as the compatibility of the similarly transformed linear system from commutative to
noncommutative by substituting as done before for the canonical structure, derivatives with
q-derivatives and products with �-products. Here the main objective is to gain a q-plane version
(related deformed version) of certain equations. Instead, one could have started straight from
the KdV equation, by using the above substitutions with respect to the derivatives and products
directly. However, a linear system has been found for the reduced version presented below,
and not the direct version.

First, one picks the simplest quantum space structure which accommodates a q-plane
after dimensional reduction. One imagines that different quantum spaces structure in four
dimensions could lead via reduction to systems on two-dimensional quantum spaces, such as
a q-plane. For our purpose, the ‘coordinates’ x = y + z,w = y − z, u, and t of the linear
system (1), obey the following quantum space structure equations:

tx = qxt wx = xw wt = tw

tu = ut wx = xw wu = uw.
(27)

Then, dimensional reductions are imposed along the wand u directions to retrieve the following
reduced system with q-derivations with respect to x and t [24]:

∂q
x Au + [Ay,

�Au] = 0

∂
q
t Au − ∂q

x (Az − Ay) + [Az,
�Ay] + [At,

�Au] = 0 (28)

∂
q
t Az − ∂q

x At + [At,
�Az] = 0.

As done previously, the gauge components are valued in sl(2, C) ⊗A, with Au,Az,Ay being
of the same form as given in (20) for n = 1 with φn, θ = 0, and

At(t, x) =
[

0 0

3U � U +
(
∂

q
x

)2
U 0

]
. (29)
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Substitution of these fields in the above system (28) gives rise to an extension of the KdV
equation on the q-plane:

∂
q
t U = 3

(
σ−1

x σt (U) � ∂q
x U +

(
∂q
x U

)
σx(U)

)
+ (∂q

x )3U (30)

which compares to previous noncommutative results with modifications on the derivations and
product.

Solutions can be sought for U(t, x), as formal series expansions:

: U(t, x) :=
∞∑

i,j=0

cij : xitj : (31)

where cij ∈ C for i, j � 0. For the (commutative) KdV equation, Taylor series expansions
with respect to initial values have been studied in [38, 39]. In a similar manner, formal series
could be written for : U(t, x) : of the noncommutative KdV equation with respect to ‘initial’
conditions. Solutions of these deformed systems would still have to be analysed. These
equations differ from the q-difference equations found for example in [40], but with solutions
written in terms of (‘Fourier type’) series [41].

A linear system to this q-plane KdV equation can now be built with a reference to the
previous section. From the following set of linear equations where t plays the role of y as a
generator of the q-plane:

Dx � f = (
∂q
x + X�

) � f = 0 (32)

Dt � f = (
∂

q
t + T �

) � f = 0 (33)

with X,T ∈ gl(2, C) ⊗A,�,� are endomorphims to be specified, and f represents a 2 × 1
column vector with A valued components. The compatibility equation has the form

(Dx � Dt − Dt � Dx) � f = 0 (34)

which explicitly can be written as[
∂q
x (T ) − ∂

q
t (X)

] � f + σt (X) � T � σ−1
x σtσ

−1
x (f ) − σ−1

x σt (T ) � X � σtσ
−1
x σ−1

x (f ) = 0

(35)

where the endomorphisms � = σ−1
x and � = σtσ

−1
x were chosen.

Now, selecting

X =
[

0 0
U 0

]
and T =

[
0 0

3U � U +
(
∂

q
x

)2
U 0

]
(36)

the compatibility condition above simply becomes[
∂q
x (T ) − ∂

q
t (X)

] � f = 0 (37)

which for all f , implies the KdV equation on the q-plane found already.

5. Summary/conclusion

This paper has shown a relation via reductions through translations or dimensional reductions
between a noncommutative version of self-dual Yang–Mills equations and noncommutative
formulations of diverse integrable systems: Toda, generalized NS and matrix KdV equations,
as well as the super matrix KdV system. It could then be seen as an extension of results
published in [24, 35] in the direction of noncommutative theories. For each of these
noncommutative versions of integrable models, a corresponding noncommutative linear
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system has been exhibited, and a link to bicomplexes provided. Conserved densities could be
obtainable in a similar fashion to the cases presented in [10, 11]. A q-plane KdV equation
with linear system has also been introduced.

Various directions can then be followed for future development. One may want to further
explore the set of solutions and properties of these noncommutative models (for example
[42]), using for instance a dressing method attempt with the linear systems presented. The
integrability, and reduced twistor interpretations could also be probed, as well as further
reductions to other integrable equations, using varied constraints and symmetries. Moreover,
equations on quantum spaces can be explored, and other formulations of noncommutative
gauge theories could be examined in a similar manner through a reduction process.
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